Course-Specific Exam Information

AP Subject	Exam question(s) will only cover:	Exam question(s) will NOT cover:	Exam question type(s)	Exam Date #1	Exam Date #2
Calculus BC**	Units 1-8 + 5 topics in Unit 10 (10.2, 10.5, 10.7, 10.8, and 10.11)	Unit 9, Unit 10 (except Topics 10.2, 10.5, 10.7, 10.8, and 10.11)	*	*	*

UNIT 6

Integration and Accumulation of Change

AP EXAM WEIGHTING 17-20% AB 17-20% BC

CLASS PERIODS ~18-20 AB ~15-16 BC

СНА	6.1	Exploring
4		Accumulations of Change
LIM 1	6.2	Approximating Areas with Riemann Sums
LIM 2	6.3	Riemann Sums, Summation Notation, and Definite Integral Notation
FUN 1	6.4	The Fundamental Theorem of Calculus and Accumulation Functions
FUN 2	6.5	Interpreting the Behavior of Accumulation Functions Involving Area
FUN 3	6.6	Applying Properties of Definite Integrals
FUN 3	6.7	The Fundamental Theorem of Calculus and Definite Integrals
FUN 4		Finding Antiderivatives and Indefinite Integrals: Basic Rules and Notation
FUN 1	6.9	Integrating Using Substitution
FUN 1	6.10	Integrating Functions Using Long Division and Completing the Square
FUN 1	6.11	Integrating Using Integration by Parts BC ONLY
FUN 1	6.12	Using Linear Partial Fractions BC ONLY
LIM 1	6.13	Evaluating Improper Integrals BC ONLY
FUN 1	6.14	Selecting Techniques for Antidifferentiation

7

Differential Equations

AP EXAM WEIGHTING 6-12% AB 6-9% BC

CLASS PERIODS	S ~8−9 AB	~9-10 s
FUN 7.1	Modeling Site with Different Equations	
FUN 7.2	Verifying Sol Differential E	
FUN 7.3	Sketching Slo	ope Fields
FUN 7.4	Reasoning Us Fields	sing Slope
FUN 7.5	Approximatin Solutions Us Method BC ON	ing Euler's
FUN 7.6	Finding Gene Solutions Us Separation of	ing
FUN 7.7	Finding Parti Solutions Us Initial Condit Separation of	ing ions and
FUN 7.8	Exponential I with Differen Equations	
FUN 7.9	Logistic Mod Differential E	

BC ONLY

Applications of Integration

AP EXAM WEIGHTING 10-15% AB 6-9% BC

CLASS	PERIODS	~19-20 AB ~13-14 B
CHA 1	8.1	Finding the Average Value of a Function on an Interval
CHA 1	8.2	Connecting Position, Velocity, and Acceleration of Functions Using Integrals
З	8.3	Using Accumulation Functions and Definite Integrals in Applied Contexts
CHA 4	8.4	Finding the Area Between Curves Expressed as Functions of x
CHA 1	8.5	Finding the Area Between Curves Expressed as Functions of y
CHA 2	8.6	Finding the Area Between Curves That Intersect at More Than Two Points
СНА	8.7	Volumes with Cross Sections: Squares and Rectangles
CHA 3	8.8	Volumes with Cross Sections: Triangles and Semicircles
CHA 3	8.9	Volume with Disc Method: Revolving Around the x- or y-Axis
CHA 2	8.10	Volume with Disc Method: Revolving Around Other Axes
CHA 4	8.11	Volume with Washer Method: Revolving Around the x- or y-Axis
CHA 2	8.12	Volume with Washer Method: Revolving Around Other Axes
CHA	8.13	The Arc Length of a Smooth, Planar Curve and Distance Traveled
		BC ONLY

Differentiation: Composite, Implicit, and **Inverse Functions**

AP EXAM WEIGHTING

9-13% AB 4-7% BC

CLASS PERIODS ~10-11 AB ~8-9 BC

FUN	3.1 The Chain Rule
1 FUN	3.2 Implicit Differentiatio
FUN 3	3.3 Differentiating Inverse Functions
FUN 1	3.4 Differentiating Inverse Trigonometric Functions
FUN 1	3.5 Selecting Procedures for Calculating Derivatives
FUN	3.6 Calculating Higher- Order Derivatives

Contextual Applications of Differentiation

AP EXAM WEIGHTING

10-15% AB 6-9% BC

CLASS PERIODS ~10-11 AB ~6-7 BC

CHA	4.1 Interpreting th	e
1	Meaning of the Derivative in C	
СНА	4.2 Straight-Line	
*	Motion: Conne Position, Veloc Acceleration	
CHA	4.3 Rates of Chan	
2	Applied Conte Than Motion	xts Other
СНА	4.4 Introduction to	Related
1	Rates	
СНА	4.5 Solving Relate	d Rates
3	Problems	
CHA	4.6 Approximating	
-	of a Function I Local Linearity	
	Linearization	y anu
LIM	4.7 Using L'Hospi	tal's Rule

for Determining Limits of Indeterminate Forms

Analytical Applications of Differentiation

AP EXAM WEIGHTING

15-18% AB 8-11% BC

CLASS	PERIOD	~15-16 AB ~10-11 B
FUN 3	5.1	Using the Mean Value Theorem
FUN 3	5.2	Extreme Value Theorem, Global Versus Local Extrema, and Critical Points
FUN 2	5.3	Determining Intervals on Which a Function Is Increasing or Decreasing
FUN 3	5.4	Using the First Derivative Test to Determine Relative (Local) Extrema
FUN 1	5.5	Using the Candidates Test to Determine Absolute (Global) Extrema
FUN 2	5.6	Determining Concavity of Functions over Their Domains
FUN 3	5.7	Using the Second Derivative Test to Determine Extrema
FUN 2	5.8	Sketching Graphs of Functions and Their Derivatives
FUN 2	5.9	Connecting a Function, Its First Derivative, and Its Second Derivative
FUN 2	5.10	Introduction to Optimization Problems
FUN	5.11	Solving Optimization Problems

5.12 Exploring Behaviors of Implicit Relations

UNIT

Limits and Continuity

AP EXAM WEIGHTING

10-12% AB 4-7% BC

CLASS PERIODS ~22-23 AB ~13-14 BC

CLASS	PERIODS	~22-23 AB ~13-14 BC
CHA 2		Introducing Calculus: Can Change Occur at an Instant?
LIM 2		Defining Limits and Using Limit Notation
LIM 2		Estimating Limit Values from Graphs
LIM 2		Estimating Limit Values from Tables
1		Determining Limits Using Algebraic Properties of Limits
LIM 1		Determining Limits Using Algebraic Manipulation
LIM 1		Selecting Procedures for Determining Limits
3		Determining Limits Using the Squeeze Theorem
LIM 2		Connecting Multiple Representations of Limits
LIM	1.10	Exploring Types of Discontinuities
LIM		Defining Continuity at a Point
LIM 1		Confirming Continuity over an Interval
LIM 1		Removing Discontinuities
3		Connecting Infinite Limits and Vertical Asymptotes
LIM 2		Connecting Limits at Infinity and Horizontal Asymptotes
FUN 3		Working with the Intermediate Value Theorem (IVT)

2

Differentiation: **Definition and Basic Derivative** Rules

10-12% AB 4-7% BC

CLASS	PERIODS	~13-14 AB ~9	-10 во
CHA 2		Defining Average Instantaneous Rat Change at a Point	tes of
CHA 1		Defining the Deriv of a Function and Using Derivative Notation	
CHA 1		Estimating Deriva of a Function at a	
FUN 3		Connecting Differentiability and Continuity: Determining When Derivatives Do and Do Not Exist	
FUN 1		Applying the Pow Rule	er
FUN 1		Derivative Rules: Constant, Sum, Difference, and Constant Multiple	
FUN LIM 1		Derivatives of cos $\sin x$, e^x , and $\ln x$	
FUN 1	2.8	The Product Rule	
FUN 1	2.9	The Quotient Rule	
FUN 1		Finding the Deriva of Tangent, Cotan Secant, and/or Cosecant Function	gent,